
Midterm Review
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS445/index.html


Exam code

• Exam on Oct 29 10:00-12:00 at Dong Shang Yuan 407 (lecture 
classroom)
• Finish the exam paper by yourself
• Allowed:
• Calculator, watch (not smart)

• Not allowed:
• Books, materials, cheat sheet, …
• Phones, any smart device

• No entering after 10:30
• Early submission period: 10:30--
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Grading policy 

• Attendance and participance: 5%
• Assignments: 35%
• Midterm exam: 20%
• Project: 10%
• Final exam: 30%
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Covered topics

• Basics
• Graphs, paths/walks/cycles, bipartite graphs

• Connectivity
• Trees
• Circuits
• Matchings
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Basic Concepts
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Graphs

• Definition A graph 𝐺 is a pair (𝑉, 𝐸)
• 𝑉: set of vertices
• 𝐸: set of edges
• 𝑒 ∈ 𝐸 corresponds to a pair of endpoints 𝑥, 𝑦 ∈ 𝑉

• Two graphs 𝐺! = 𝑉!, 𝐸! , 𝐺! = 𝑉", 𝐸" are isomorphic if there is a 
bijection 𝑓: 𝑉! → 𝑉" s.t.

𝑒 = 𝑎, 𝑏 ∈ 𝐸! ⟺ 𝑓 𝑒 := 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐸"
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We mainly focus on
Simple graph:
No loops, no multi-edges



Example: Complete graphs

• There is an edge between every pair of vertices
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Example: Regular graphs

• Every vertex has the same degree
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Example: Bipartite graphs

• The vertex set can be partitioned into two sets 𝑋 and 𝑌 such that 
every edge in 𝐺 has one end vertex in 𝑋 and the other in 𝑌
• Complete bipartite graphs
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Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic
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Subgraphs

• A subgraph of a graph 𝐺 is a graph 𝐻 such that 
𝑉 𝐻 ⊆ 𝑉 𝐺 , 𝐸 𝐻 ⊆ 𝐸 𝐺

and the ends of an edge 𝑒 ∈ 𝐸(𝐻) are the same as its ends in 𝐺
• 𝐻 is a spanning subgraph when 𝑉(𝐻) = 𝑉(𝐺)
• The subgraph of 𝐺 induced by a subset 𝑆 ⊆ 𝑉(𝐺) is the subgraph whose 

vertex set is 𝑆 and whose edges are all the edges of 𝐺 with both ends in 𝑆
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Paths (路径)

• A path is a nonempty graph 𝑃 = (𝑉, 𝐸) of the form
𝑉 = 𝑥#, 𝑥!, … , 𝑥$ 𝐸 = 𝑥#𝑥!, 𝑥!𝑥", … , 𝑥$%!𝑥$

where the 𝑥& are all distinct
• 𝑃$: path of length 𝑘 (the number of edges)
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Walk (游走)

• A walk is a non-empty alternating sequence 𝑣#𝑒!𝑣!𝑒"…𝑒$𝑣$
• The vertices not necessarily distinct
• The length = the number of edges

• Proposition (1.2.5, W) Every 𝑢-𝑣 walk contains a 𝑢-𝑣 path
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Cycles (环)

• If 𝑃 = 𝑥#𝑥!…𝑥$%! is a path and 𝑘 ≥ 3, then the graph 𝐶 ≔ 𝑃 +
𝑥$%!𝑥# is called a cycle
• 𝐶$: cycle of length 𝑘 (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle
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Neighbors and degree

• Two vertices 𝑎 ≠ 𝑏 are called adjacent if they are joined by an edge
• 𝑁(𝑥): set of all vertices adjacent to 𝑥

• neighbors of 𝑥
• A vertex is isolated vertex if it has no neighbors
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Handshaking Theorem (Euler 1736)

• Theorem A finite graph 𝐺 has an even number of vertices with 
odd degree.
• Proof The degree of 𝑥 is the number of times it appears 

in the right column. Thus

@
(∈*(,)

deg(𝑥) = 2 𝐸(𝐺)
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Degree

• Minimal degree of 𝐺: 𝛿 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉
• Maximal degree of 𝐺: ∆ 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Average degree of 𝐺: 𝑑 𝐺 = !
*
∑.∈* 𝑑(𝑣) =

" /
*

• All measures the `density’ of a graph

• 𝑑(𝐺) ≥ 𝛿(𝐺)
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Degree (global to local)

• Proposition (1.2.2, D) Every graph 𝐺 with at least one edge has a 
subgraph 𝐻 with

𝛿 𝐻 >
1
2
𝑑(𝐻) ≥

1
2
𝑑(𝐺)

• Example: 𝐺 = 7, 𝑑 𝐺 = 16/7
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Minimal degree guarantees long paths and 
cycles
• Proposition (1.3.1, D) Every graph 𝐺 contains a path of length 𝛿(𝐺)

and a cycle of length at least 𝛿 𝐺 + 1, provided 𝛿(𝐺) ≥ 2. 
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Distance and diameter

• The distance 𝑑,(𝑥, 𝑦) in 𝐺 of two vertices 𝑥, 𝑦 is the length of a 
shortest 𝑥~𝑦 path
• if no such path exists, we set 𝑑 𝑥, 𝑦 ≔ ∞

• The greatest distance between any two vertices in 𝐺 is the diameter
of 𝐺
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Girth

• The minimum length of a cycle in a graph 𝐺 is the girth 𝑔(𝐺) of 𝐺

• Example: The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)
• girth = 5
• smallest graph satisfies the above properties

• A tree has girth ∞
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Girth and diameter/minimal degree

• Proposition (1.3.2, D) Every graph 𝐺 containing a cycle satisfies 
𝑔 𝐺 ≤ 2 diam 𝐺 + 1

• 𝑛# 𝛿, 𝑔 ≔ X
1 + 𝛿 ∑&0#1%!(𝛿 − 1)& , if 𝑔 = 2𝑟 + 1 is odd
2∑&0#1%!(𝛿 − 1)& , if 𝑔 = 2𝑟 is even

• Exercise (Ex7, ch1, D) Let 𝐺 be a graph. If 𝛿(𝐺) ≥ 𝛿 ≥ 2 and 𝑔(𝐺) ≥
𝑔, then 𝐺 ≥ 𝑛# 𝛿, 𝑔
• Corollary (1.3.5, D) If 𝛿(𝐺) ≥ 3, then 𝑔 𝐺 < 2 log 𝐺
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Triangle-free bounds # of edges

• Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in 
an 𝑛-vertex triangle-free simple graph is 𝑛"/4

• The bound is best possible
• There is a triangle-free graph with 𝑛"/4 edges: 𝐾 2/" , 2/"

• Extremal problems
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Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⟺ it contains no odd cycle
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Complete graph is a union of bipartite graphs

• The union of graphs 𝐺!, … , 𝐺$, written 𝐺! ∪⋯∪ 𝐺$, is the graph with 
vertex set ⋃&0!

$ 𝑉(𝐺&) and edge set ⋃&0!
$ 𝐸(𝐺&)

• Theorem (1.2.23, W) The complete graph 𝐾2 can be expressed as the 
union of 𝑘 bipartite graphs ⟺𝑛 ≤ 2$

• Theorem (1.3.19, W) Every loopless graph 𝐺 has a bipartite subgraph 
with at least 𝐸 /2 edges
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Connectivity
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Connected, connected component

• A graph 𝐺 is connected if 𝐺 ≠ ∅ and any two of its vertices are linked 
by a path
• A maximal connected subgraph of 𝐺 is a (connected) component
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Quiz

• Problem (1B, L) Suppose 𝐺 is a graph on 10 vertices that is not 
connected. Prove that 𝐺 has at most 36 edges. Can equality occur?
• More general (Ex9, S1.1.2, H) Let 𝐺 be a graph of order 𝑛 that is not 

connected. What is the maximum size of 𝐺?
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Connected vs. minimal degree

• Proposition (1.3.15, W) If 𝛿(𝐺) ≥ 2%!
"

, then 𝐺 is connected

• (Ex16, S1.1.2, H) (1.3.16, W)
If 𝛿(𝐺) ≥ 2%"

"
, then 𝐺 need not be connected

• Extremal problems
• “best possible” “sharp”
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Add/delete an edge

• Components are pairwise disjoint; no two share a vertex
• Adding an edge decreases the number of components by 0 or 1
• ⇒ deleting an edge increases the number of components by 0 or 1

• Proposition (1.2.11, W) 
Every graph with 𝑛 vertices and 𝑘 edges has at least 𝑛 − 𝑘
components
• An edge 𝑒 is called a bridge if the graph 𝐺 − 𝑒 has more components
• Proposition (1.2.14, W) 

An edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• Or equivalently, an edge 𝑒 is not a bridge ⟺𝑒 lies on a cycle of 𝐺
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Cut vertex and connectivity

• A node 𝑣 is a cut vertex if the graph 𝐺 − 𝑣 has more 
components
• A proper subset S of vertices is a vertex cut set if the 

graph 𝐺 − 𝑆 is disconnected
• The connectivity, 𝜅(𝐺), is the minimum size of a cut 

set of 𝐺
• The graph is 𝑘-connected for any 𝑘 ≤ 𝜅(𝐺)
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Connectivity properties

• 𝜅 𝐾2 : = 𝑛 − 1
• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then 
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2
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Connectivity properties (cont.)

• 𝜅 𝐺 ≥ 2⟺𝐺 is connected and has no cut vertices
• A vertex lies on a cycle ⇏ it is not a cut vertex
• ⇒ (Ex13, S1.1.2, H) Every vertex of a connected graph 𝐺 lies on at least one 

cycle ⇏ 𝜅 𝐺 ≥ 2
• (Ex14, S1.1.2, H) 𝜅 𝐺 ≥ 2 implies 𝐺 has at least one cycle

• (Ex12, S1.1.2, H) 𝐺 has a cut vertex vs. 𝐺 has a bridge
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Connectivity and minimal degree

• (Ex15, S1.1.2, H) 
• 𝜅 𝐺 ≤ 𝛿(𝐺)
• If 𝛿 𝐺 ≥ 𝑛 − 2, then 𝜅 𝐺 = 𝛿(𝐺)
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Edge-connectivity

• A proper subset 𝐹 ⊂ 𝐸 is edge cut set if the graph 𝐺 − 𝐹 is 
disconnected
• The edge-connectivity 𝜆(𝐺) is the minimal size of edge cut set
• 𝜆 𝐺 = 0 if 𝐺 is disconnected
• Proposition (1.4.2, D) If 𝐺 is non-trivial, then 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)
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Trees
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Definition and properties

• A tree is a connected graph 𝑇 with no cycles
• Recall that a graph is bipartite ⟺ it has no odd cycle
• (Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that an edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• ⇒ Every edge in a tree is a bridge
• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒

is disconnected for every edge 𝑒 ∈ 𝑇
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Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔ 𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges
⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges
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Leaves of tree

• A vertex of degree 1 in a tree is called a leaf
• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then 
𝑇 has at least two leaves
• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least 
∆ leaves
• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of 

leaves is
2 + @

.:6(.)78

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
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Properties

• The center of a tree
• Theorem (1.15, H) In any tree, the center is either a single vertex or a 

pair of adjacent vertices
• Tree as subgraphs
• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺

be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph
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Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a 
tree that contains every vertex of 𝐺
• Example: A telecommunications company tries to lay cable in a new 

neighbourhood
• Proposition (2.1.5c, W) Every connected graph contains a spanning 

tree

41



Minimal spanning tree - Kruskal’s Algorithm 

• Given: A connected, weighted graph 𝐺
1. Find an edge of minimum weight and mark it. 
2. Among all of the unmarked edges that do not form a cycle with any 

of the marked edges, choose an edge of minimum weight and mark 
it

3. If the set of marked edges forms a spanning tree of 𝐺, then stop. If 
not, repeat step 2 
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Example
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Theoretical guarantee of Kruskal’s algorithm 

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of 
minimum total weight
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Cayley’s tree formula

• Theorem (1.18, H). There are 𝑛2%"
distinct labeled trees of order 𝑛
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Example
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Trees with fixed degrees

• Corollary (2.2.4, W) Given positive integers 𝑑!, … , 𝑑2 summing to 
2𝑛 − 2, there are exactly 2%" !

∏ 6!%! !
trees with vertex set 𝑛 such that 

vertex 𝑖 has degree 𝑑& for each 𝑖

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees 
3,1,2,1,3,1,1
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Matrix tree theorem - cofactor

• For an 𝑛×𝑛 matrix 𝐴, the 𝑖, 𝑗 cofactor of 
𝐴 is defined to be

−1 &;< det 𝑀&<
where 𝑀&< represents the 𝑛 − 1 ×(
)

𝑛 −
1 matrix formed by deleting row 𝑖 and 
column 𝑗 from 𝐴
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Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 𝐺 is a connected labeled 
graph with adjacency matrix 𝐴 and degree matrix 𝐷, then the number 
of unique spanning trees of 𝐺 is equal to the value of any cofactor of 
the matrix 𝐷 − 𝐴
• If the row sums and column sums of a matrix are all 0, then the 

cofactors all have the same value
• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove 

Cayley’s theorem
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Example
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Wiener index

• In a communication network, large diameter may be acceptable if 
most pairs can communicate via short paths. This leads us to study 
the average distance instead of the maximum
• Wiener index 𝐷 𝐺 = ∑=,.∈*(,)𝑑,(𝑢, 𝑣)
• Theorem (2.1.14, W) Among trees with 𝑛 vertices, the Wiener index 
𝐷(𝑇) is minimized by stars and maximized by paths, both uniquely
• Over all connected 𝑛-vertex graphs, 𝐷 𝐺 is minimized by 𝐾2 and 

maximized by paths 
• (Corollary 2.1.16, W) If 𝐺 is a connected 𝑛-vertex graph, then 𝐷(𝐺) ≤
𝐷(𝑃!"#)
• (Lemma 2.1.15, W) If 𝐻 is a subgraph of 𝐺, then 𝑑!(𝑢, 𝑣) ≤ 𝑑"(𝑢, 𝑣)
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Circuits
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Eulerian circuit

• A closed walk through a graph using every edge once is called an 
Eulerian circuit
• A graph that has such a walk is called an Eulerian graph
• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 

nontrivial component and its vertices all have even degree
• (possibly with multiple edges)
• Proof “⟹” That 𝐺 must be connected is obvious.

Since the path enters a vertex through some edge and 
leaves by another edge, it is clear that all degrees must be even
• Lemma (1.2.25, W) If every vertex of a graph 𝐺 has degree at least 2, then 𝐺

contains a cycle.
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Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex 𝑟 and start with the trivial partial circuit (𝑟)
2. Given a partial circuit (𝑥#, 𝑒!, 𝑥!, … , 𝑥D%!, 𝑒D , 𝑥D = 𝑥#) that traverses not 

all edges of 𝐺, remove these edges from 𝐺
3. Let 𝑖 be the least integer for which 𝑥& is incident with one of the 

remaining edges
4. Form a greedy partial circuit among the remaining edges of the form 

(𝑥& = 𝑦#, 𝑒!E , 𝑦!, … , 𝑦F%!, 𝑒FE , 𝑦F = 𝑥&)
5. Expand the original circuit by setting

(𝑥#, 𝑒!, … , 𝑒& , 𝑥& = 𝑦#, 𝑒!E , 𝑦!, … , 𝑦F%!, 𝑒FE , 𝑦F = 𝑥& , 𝑒&;!, … , 𝑒D , 𝑥D = 𝑥#)
6. Repeat step 2-5
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Example

1. Start with the trivial circuit (1)
2. Greedy algorithm yields the partial circuit

(1,2,4,3,1)
3. Remove these edges
4. The first vertex incident with remaining edges is 2
5. Greedy algorithms yields (2,5,8,2)
6. Expanding (1,2,5,8,2,4,3,1)
7. Remove these edges
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Example (cont.)

6.   Expanding (1,2,5,8,2,4,3,1)
7.   Remove these edges
8. First vertex incident with remaining edges is 4
9. Greedy algorithm yields 4,6,7,4,9,6,10,4
10. Expanding 1,2,5,8,2,4,6,7,4,9,6,10,4,3,1
11. Remove these edges
12. First vertex incident with remaining edges is 7
13. Greedy algorithm yields 7,9,11,7
14. Expanding 1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1
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Eulerian circuit

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 
nontrivial component and its vertices all have even degree
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TONCAS

• TONCAS: The obvious necessary condition is also sufficient
• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 

nontrivial component and its vertices all have even degree

58



Hamiltonian path/circuits

• A path 𝑃 is Hamiltonian if 𝑉 𝑃 = 𝑉(𝐺)
• Any graph contains a Hamiltonian path is called traceable

• A cycle 𝐶 is called Hamiltonian if it spans all vertices of 𝐺
• A graph is called Hamiltonian if it contains a Hamiltonian circuit

• In the mid-19th century, Sir William Rowan Hamilton tried to 
popularize the exercise of finding such a closed path in the graph of 
the dodecahedron
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Degree parity is not a criterion

• Hamiltonian graphs
• all even degrees 𝐶#$
• all odd degrees 𝐾#$
• a mixture 𝐺#

• non-Hamiltonian graphs
• all even 𝐺%
• all odd 𝐾&,(
• mixed 𝑃)
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Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is 
the Hamiltonian path problem, which is NP-complete
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P, NP, NPC, NP-hard

• P The general class of questions for which 
some algorithm can provide an answer in 
polynomial time
• NP  The class of questions for which an answer 

can be verified in polynomial time
• NP-Complete

1. c is in NP
2. Every problem in NP is reducible to c in 

polynomial time
• NP-hard
• c is in NP
• Every problem in NP is reducible to c in polynomial 
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Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let 𝐺 be a graph of order 𝑛 ≥ 3. If 𝛿(𝐺) ≥ 𝑛/2, 
then 𝐺 is Hamiltonian

• The bound is tight
(Ex12b, S1.4.3, H) 𝐺 = 𝐾!,!#$ is not Hamiltonian
• The condition is not necessary

• 𝐶! is Hamiltonian but with small minimum (and even maximum) degree
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Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let 𝐺 be a graph of 
order 𝑛 ≥ 3. If deg 𝑥 + deg(𝑦) ≥ 𝑛 for all pairs of nonadjacent 
vertices 𝑥, 𝑦, then 𝐺 is Hamiltonian
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Independence number & Hamiltonian

• A set of vertices in a graph is called independent if 
they are pairwise nonadjacent
• The independence number of a graph 𝐺, denoted as 
𝛼(𝐺), is the largest size of an independent set
• Example: 𝛼 𝐺! = 2, 𝛼 𝐺" = 3
• Theorem (1.24, H) Let 𝐺 be a connected graph of 

order 𝑛 ≥ 3. If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 is Hamiltonian
• The result is tight: 𝜅(𝐺) ≥ 𝛼(𝐺)−1 is not enough
• 𝐾*,*+#: 𝜅 = r, 𝛼 = 𝑟 + 1
• Peterson graph: 𝜅 = 3, 𝛼 = 4 (Ex4, S1.4.3, H)
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Pattern-free & Hamiltonian

• 𝐺 is 𝐻-free if 𝐺 doesn’t contain a copy of 𝐻 as induced subgraph
• Theorem (1.25, H) If 𝐺 is 2-connected and 𝐾!,8, 𝑍! -free, then 𝐺 is 

Hamiltonian

• The condition 2-connectivity is necessary
• (Ex2, S1.4.3, H) If 𝐺 is Hamiltonian, then 𝐺 is 2-connected
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Matchings
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Definitions

• A matching is a set of independent edges, in which no pair shares a 
vertex
• The vertices incident to the edges of a matching 𝑀 are 𝑀-saturated; 

the others are 𝑀-unsaturated
• A perfect matching in a graph is a matching that saturates every 

vertex
• Example (3.1.2, W) The number of perfect matchings in 𝐾2,2 is 𝑛!
• Example (3.1.3, W) The number of perfect matchings in 𝐾"2 is 

𝑓2 = 2𝑛 − 1 2𝑛 − 3 ⋯1 = 2𝑛 − 1 ‼
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Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged 
by adding an edge
• A maximum matching is a matching of maximum size among all 

matchings in the graph
• Example: 𝑃8, 𝑃G

• Every maximum matching is maximal, but not every maximal 
matching is a maximum matching
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Symmetric difference of matchings

• The symmetric difference of 𝑀,𝑀′ is 𝑀∆𝑀E = (𝑀 −𝑀′) ∪ (𝑀E −𝑀)
• Lemma (3.1.9, W) Every component of the symmetric difference of 

two matchings is a path or an even cycle
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Maximum matching and augmenting path

• Given a matching 𝑀, an 𝑀-alternating path is a path 
that alternates between edges in 𝑀 and edges not in 
𝑀
• An 𝑀-alternating path whose endpoints are 𝑀-

unsaturated is an 𝑀-augmenting path
• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching 
𝑀 in a graph 𝐺 is a maximum matching in 𝐺 ⇔ 𝐺 has 
no 𝑀-augmenting path
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Hall’s theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 𝐺 be a bipartite 
graph with partition 𝑋, 𝑌.
𝐺 contains a matching of 𝑋⇔ 𝑁(𝑆) ≥ 𝑆 for all 𝑆 ⊆ 𝑋

• Corollary (3.1.13, W; 2.1.3, D) Every 𝑘-regular (𝑘 > 0) bipartite graph 
has a perfect matching
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Vertex cover

• A set 𝑈 ⊆ 𝑉 is a (vertex) cover of 𝐸 if every edge in 𝐺 is incident with 
a vertex in 𝑈
• Example: 
• Art museum is a graph with hallways are edges and corners are nodes
• A security camera at the corner will guard the paintings on the hallways
• The minimum set to place the cameras?
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König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
Let 𝐺 be a bipartite graph. The maximum size of a matching in 𝐺 is 
equal to the minimum size of a vertex cover of its edges
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Augmenting path algorithm (3.2.1, W)

• Input: 𝐺 = 𝐵(𝑋, 𝑌), a matching 𝑀 in 𝐺
𝑈 = 𝑀−unsaturated verHces in 𝑋

• Idea: Explore 𝑀-alternating paths from 𝑈
letting 𝑆 ⊆ 𝑋 and 𝑇 ⊆ 𝑌 be the sets of vertices reached
• Initialization: 𝑆 = 𝑈, 𝑇 = ∅ and all vertices in 𝑆 are unmarked
• Iteration: 

• If S has no unmarked vertex, stop and report 𝑇 ∪ (𝑋 − 𝑆) as a minimum cover and 𝑀
as a maximum matching

• Otherwise, select an unmarked 𝑥 ∈ 𝑆 to explore 
• Consider each 𝑦 ∈ 𝑁(𝑥) such that 𝑥𝑦 ∉ 𝑀

• If 𝑦 is unsaturated, terminate and report an 𝑀-augmenting path from 𝑈 to 𝑦
• Otherwise, 𝑦𝑤 ∈ 𝑀 for some 𝑤

• include 𝑦 in 𝑇 (reached from 𝑥) and include 𝑤 in 𝑆 (reached from 𝑦)
• After exploring all such edges incident to 𝑥, mark 𝑥 and iterate.
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Example
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Red: A random matching



Theoretical guarantee for Augmenting path 
algorithm 
• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path 

Algorithm to a bipartite graph produces a matching and a vertex 
cover of equal size
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Weighted bipartite matching

• The maximum weighted matching problem is to seek a perfect matching 𝑀
to maximize the total weight 𝑤(𝑀)
• Bipartite graph

• W.l.o.g. Assume the graph is 𝐾!,! with 𝑤#,$ ≥ 0 for all 𝑖, 𝑗 ∈ 𝑛
• Optimization:

max7
#,$

𝑎#,$𝑤#,$

𝑠. 𝑡. 𝑎#,% +⋯+ 𝑎#,! ≤ 1 for any 𝑖
𝑎%,$ +⋯+ 𝑎!,$ ≤ 1 for any 𝑗
𝑎#,$ ∈ 0,1

• Integer programming
• General IP problems are NP-Complete
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(Weighted) cover

• A (weighted) cover is a choice of labels 𝑢!, … , 𝑢2 and 𝑣!, … , 𝑣2 such 
that 𝑢& + 𝑣< ≥ 𝑤&,< for all 𝑖, 𝑗
• The cost 𝑐(𝑢, 𝑣) of a cover (𝑢, 𝑣) is ∑, 𝑢, + ∑- 𝑣-
• The minimum weighted cover problem is that of finding a cover of minimum 

cost
• Optimization problem

min@
&

𝑢& +@
<

𝑣<

𝑠. 𝑡. 𝑢& + 𝑣< ≥ 𝑤&,< for any 𝑖, 𝑗
𝑢& , 𝑣< ≥ 0 for any 𝑖, 𝑗
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Duality

• Weak duality theorem
• For each feasible solution 𝑎 and 𝑢, 𝑣

N
,,-

𝑎,,-𝑤,,- ≤N
,

𝑢, +N
-

𝑣-

thus max∑,,- 𝑎,,-𝑤,,- ≤ min∑, 𝑢, + ∑- 𝑣-
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(IP)

max1
!,#

𝑎!,#𝑤!,#

𝑠. 𝑡. 𝑎!,$ +⋯+ 𝑎!,% ≤ 1 for any 𝑖
𝑎$,# +⋯+ 𝑎%,# ≤ 1 for any 𝑗
𝑎!,# ∈ 0,1

(Linear programming)

max1
!,#

𝑎!,#𝑤!,#

𝑠. 𝑡. 𝑎!,$ +⋯+ 𝑎!,% ≤ 1 for any 𝑖
𝑎$,# +⋯+ 𝑎%,# ≤ 1 for any 𝑗
𝑎!,# ≥ 0

(Dual)

min1
!

𝑢! +1
#

𝑣#

𝑠. 𝑡. 𝑢! + 𝑣# ≥ 𝑤!,# for any 𝑖, 𝑗
𝑢! , 𝑣# ≥ 0



Duality (cont.)

• Strong duality theorem
• If one of the two problems has an optimal solution, so does the other one and 

that the bounds given by the weak duality theorem are tight

maxN
,,-

𝑎,,-𝑤,,- = minN
,

𝑢, +N
-

𝑣-

• Lemma (3.2.7, W) For a perfect matching 𝑀 and cover (𝑢, 𝑣) in a 
weighted bipartite graph 𝐺, 𝑐 𝑢, 𝑣 ≥ 𝑤 𝑀
𝑐(𝑢, 𝑣) = 𝑤(𝑀)⇔ 𝑀 consists of edges 𝑥&𝑦< such that 𝑢& + 𝑣< = 𝑤&,<
In this case, 𝑀 and (𝑢, 𝑣) are optimal.

81



Equality subgraph

• The equality subgraph 𝐺=,. for a cover (𝑢, 𝑣) is the spanning subgraph 
of 𝐾2,2 having the edges 𝑥&𝑦< such that 𝑢& + 𝑣< = 𝑤&,<
• So if (𝑢, 𝑣) is optimal, then 𝑀 consistes the edges in 𝐺H,I
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Hungarian algorithm

• Input: Weighted 𝐾2,2 = 𝐵(𝑋, 𝑌)
• Idea: Iteratively adjusting the cover (𝑢, 𝑣) until the equality subgraph 
𝐺=,. has a perfect matching
• Initialization: Let (𝑢, 𝑣) be a cover, such as 𝑢& = max

<
𝑤&,<, 𝑣< = 0
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(Dual)

min1
!

𝑢! +1
#

𝑣#

𝑠. 𝑡. 𝑢! + 𝑣# ≥ 𝑤!,# for any 𝑖, 𝑗
𝑢! , 𝑣# ≥ 0



Hungarian algorithm (cont.)

• Iteration: Find a maximum matching 𝑀 in 𝐺=,.
• If 𝑀 is a perfect matching, stop and report 𝑀 as a maximum weight matching
• Otherwise, let 𝑄 be a vertex cover of size 𝑀 in 𝐺H,I

• Let 𝑅 = 𝑋 ∩ 𝑄, 𝑇 = 𝑌 ∩ 𝑄
𝜖 = min 𝑢# + 𝑣$ − 𝑤#,$: 𝑥# ∈ 𝑋 − 𝑅, 𝑦$ ∈ 𝑌 − 𝑇

• Decrease 𝑢# by 𝜖 for 𝑥# ∈ 𝑋 − 𝑅 and increase 𝑣$ by 𝜖 for 𝑦$ ∈ 𝑇
• Form the new equality subgraph and repeat
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Example
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Example 2
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Optimal value is the same
But the solution is not unique



Example 3
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Theoretical guarantee for Hungarian 
algorithm
• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum 

weight matching and a minimum cost cover

88



Back to (unweighted) bipartite graph

• The weights are binary 0,1
• Hungarian algorithm always maintain integer labels in the weighted 

cover, thus the solution will always be 0,1
• The vertices receiving label 1 must cover the weight on the edges, 

thus cover all edges
• So the solution is a minimum vertex cover
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Stable matching

• A family ≤. .∈* of linear orderings ≤. on 𝐸(𝑣) is a set of 
preferences for 𝐺
• A matching 𝑀 in 𝐺 is stable if for any edge 𝑒 ∈ 𝐸 ∖ 𝑀, there exists an 

edge 𝑓 ∈ 𝑀 such that 𝑒 and 𝑓 have a common vertex 𝑣 with 𝑒 <. 𝑓
• Unstable: There exists 𝑥𝑦 ∈ 𝐸 ∖ 𝑀 but 𝑥𝑦J, 𝑥J𝑦 ∈ 𝑀 with 𝑥𝑦′ <K 𝑥𝑦
𝑥′𝑦 <L 𝑥𝑦
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Gale-Shapley Proposal Algorithm

• Input: Preference rankings by each of 𝑛 men and 𝑛 women
• Idea: Produce a stable matching using proposals by maintaining 

information about who has proposed to whom and who has rejected 
whom
• Iteration: Each man proposes to the highest woman on his preference 

list who has not previously rejected him
• If each woman receives exactly one proposal, stop and use the resulting 

matching 
• Otherwise, every woman receiving more than one proposal rejects all of them 

except the one that is highest on her preference list
• Every woman receiving a proposal says “maybe” to the most attractive 

proposal received
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Example
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Example (gif)
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Theoretical guarantee for the Proposal 
Algorithm
• Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm 

produces a stable matching
• Who proposes matters (jobs/candidates)
• When the algorithm runs with women proposing, every woman is as 

least as happy as when men do the proposing
• And every man is at least as unhappy

94



Perfect matchings

• 𝐾"2 , 𝐶"2 , 𝑃"2 have perfect matchings
•

• Theorem(1.58, H) If 𝐺 is a graph of order 2𝑛 such that 𝛿(𝐺) ≥ 𝑛, then 
𝐺 has a perfect matching
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Tutte’s Theorem (TONCAS)

• Let 𝑞(𝐺) be the number of connected components with odd order
• Theorem (1.59, H; 2.2.1, D; 3.3.3, W) 

Let 𝐺 be a graph of order 𝑛 ≥ 2. 𝐺 has a perfect matching ⇔𝑞(𝐺 −
𝑆) ≤ 𝑆 for all 𝑆 ⊆ 𝑉
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Petersen’s Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W) 
Every bridgeless, 3-regular graph contains a perfect matching
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Find augmenting paths in general graphs

• Different from bipartite graphs
• Example: How to explore from 𝑀-unsaturated point 𝑢

• Flower/stem/blossom
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Lifting
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Edmonds’ blossom algorithm (3.3.17, W)

• Input: A graph 𝐺, a matching 𝑀 in 𝐺, an 𝑀-unsaturated vertex 𝑢
• Idea: Explore M-alternating paths from 𝑢, recording for each vertex the vertex from 

which it was reached, and contracting blossoms when found
• Maintain sets 𝑆 and 𝑇 analogous to those in Augmenting Path Algorithm, with 𝑆 consisting of 𝑢

and the vertices reached along saturated edges
• Reaching an unsaturated vertex yields an augmentation.

• Initialization: 𝑆 = {𝑢} and 𝑇 = ∅
• Iteration: If 𝑆 has no unmarked vertex, stop; there is no 𝑀-augmenting path from 𝑢

• Otherwise, select an unmarked 𝑣 ∈ 𝑆. To explore from 𝑣, successively consider each 𝑦 ∈ 𝑁(𝑣) s.t.
𝑦 ∉ 𝑇
• If 𝑦 is unsaturated by 𝑀, then trace back from 𝑦 (expanding blossoms as needed) to report an 𝑀-augmenting 
𝑢, 𝑦-path

• If 𝑦 ∈ 𝑆, then a blossom has been found. Suspend the exploration of 𝑣 and contract the blossom, replacing its 
vertices in 𝑆 and 𝑇 by a single new vertex in 𝑆. Continue the search from this vertex in the smaller graph.

• Otherwise, 𝑦 is matched to some 𝑤 by 𝑀. Include 𝑦 in 𝑇 (reached from 𝑣), and include 𝑤 in 𝑆 (reached from 𝑦)
• After exploring all such neighbors of 𝑣, mark 𝑣 and iterate
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Illustration
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Example
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TONCAS

• [Eulerian circuits] Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has 
at most one nontrivial component and its vertices all have even 
degree
• [Hall’s theorem] (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 𝐺 be a 

bipartite graph with partition 𝑋, 𝑌.
𝐺 contains a matching of 𝑋⇔ 𝑁(𝑆) ≥ 𝑆 for all 𝑆 ⊆ 𝑋
• [Tutte’s Theorem](1.59, H; 2.2.1, D; 3.3.3, W) 

Let 𝐺 be a graph of order 𝑛 ≥ 2. 𝐺 has a perfect matching ⇔𝑞(𝐺 −
𝑆) ≤ 𝑆 for all 𝑆 ⊆ 𝑉
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Peterson graph

• The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)
• girth = 5
• smallest graph satisfies the above properties

• 𝜅 = 3, 𝛼 = 4
• Radius=2, diameter=2
• The Petersen graph has a Hamiltonian path but 

no Hamiltonian cycle
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