Midterm Review

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Exam code

- Exam on Oct 29 10:00-12:00 at Dong Shang Yuan 407 (lecture classroom)
- Finish the exam paper by yourself
- Allowed:
 - Calculator, watch (not smart)
- Not allowed:
 - Books, materials, cheat sheet, ...
 - Phones, any smart device
- No entering after 10:30
- Early submission period: 10:30--

Grading policy

- Attendance and participance: 5%
- Assignments: 35%
- Midterm exam: 20%
- Project: 10%
- Final exam: 30%

Covered topics

- Basics
 - Graphs, paths/walks/cycles, bipartite graphs
- Connectivity
- Trees
- Circuits
- Matchings

Basic Concepts

Graphs

- Definition A graph G is a pair (V, E)
 - *V*: set of vertices
 - *E*: set of edges
 - $e \in E$ corresponds to a pair of endpoints $x, y \in V$
- Two graphs $G_1 = (V_1, E_1), G_1 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ s.t. $e = \{a, b\} \in E_1 \iff f(e) := \{f(a), f(b)\} \in E_2$

We mainly focus on Simple graph: No loops, no multi-edges

Example: Complete graphs

• There is an edge between every pair of vertices

Example: Regular graphs

• Every vertex has the same degree

Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs

Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

Figure 1.4

Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
 - *H* is a spanning subgraph when V(H) = V(G)
 - The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S

Paths (路径)

- A path is a nonempty graph P = (V, E) of the form $V = \{x_0, x_1, \dots, x_k\}$ $E = \{x_0 x_1, x_1 x_2, \dots, x_{k-1} x_k\}$ where the x_i are all distinct
- P^k : path of length k (the number of edges)

Walk (游走)

- A walk is a non-empty alternating sequence $v_0 e_1 v_1 e_2 \dots e_k v_k$
 - The vertices not necessarily distinct
 - The length = the number of edges
- Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (环)

- If $P = x_0 x_1 \dots x_{k-1}$ is a path and $k \ge 3$, then the graph $C \coloneqq P + x_{k-1} x_0$ is called a cycle
- C^k : cycle of length k (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
 - N(x): set of all vertices adjacent to x
 - neighbors of x
 - A vertex is isolated vertex if it has no neighbors

Handshaking Theorem (Euler 1736)

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$\sum_{x \in V(G)} \deg(x) = 2|E(G)|$$

edge	ends
a	x, z
b	y,w
c	x, z
d	z,w
e	z,w
$\int f$	x,y
g	z,w

Degree

- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \min\{d(v): v \in V\}$

• Average degree of
$$G: d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$$

- All measures the `density' of a graph
- $d(G) \ge \delta(G)$

Degree (global to local)

• Proposition (1.2.2, D) Every graph G with at least one edge has a subgraph H with

$$\delta(H) > \frac{1}{2}d(H) \ge \frac{1}{2}d(G)$$

• Example: |G| = 7, d(G) = 16/7

Minimal degree guarantees long paths and cycles

• Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \ge 2$.

Distance and diameter

- The distance d_G(x, y) in G of two vertices x, y is the length of a shortest x~y path
 - if no such path exists, we set $d(x, y) \coloneqq \infty$
- The greatest distance between any two vertices in *G* is the diameter of *G*

- The minimum length of a cycle in a graph G is the girth g(G) of G
- Example: The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- A tree has girth ∞

Girth and diameter/minimal degree

• Proposition (1.3.2, D) Every graph G containing a cycle satisfies $g(G) \le 2 \operatorname{diam}(G) + 1$

•
$$n_0(\delta, g) \coloneqq \begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r \text{ is even} \end{cases}$$

- Exercise (Ex7, ch1, D) Let G be a graph. If $\delta(G) \ge \delta \ge 2$ and $g(G) \ge g$, then $|G| \ge n_0(\delta, g)$
- Corollary (1.3.5, D) If $\delta(G) \ge 3$, then $g(G) < 2\log|G|$

Triangle-free bounds # of edges

- Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in an *n*-vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$
- The bound is best possible
- There is a triangle-free graph with $\lfloor n^2/4 \rfloor$ edges: $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$
- Extremal problems

Bipartite graphs

Theorem (1.2.18, W, Kőnig 1936)
 A graph is bipartite ⇔ it contains no odd cycle

Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

- The union of graphs $G_1, ..., G_k$, written $G_1 \cup \cdots \cup G_k$, is the graph with vertex set $\bigcup_{i=1}^k V(G_i)$ and edge set $\bigcup_{i=1}^k E(G_i)$
- Theorem (1.2.23, W) The complete graph K_n can be expressed as the union of k bipartite graphs $\Leftrightarrow n \leq 2^k$
- Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph with at least |E|/2 edges

Connectivity

Connected, connected component

- A graph G is connected if G ≠ Ø and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component

Quiz

- Problem (1B, L) Suppose G is a graph on 10 vertices that is not connected. Prove that G has at most 36 edges. Can equality occur?
- More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not connected. What is the maximum size of G?

Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then G is connected
- (Ex16, S1.1.2, H) (1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then G need not be connected
- Extremal problems
- "best possible" "sharp"

Add/delete an edge

- Components are pairwise disjoint; no two share a vertex
- Adding an edge decreases the number of components by 0 or 1
 - \Rightarrow deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W)
 Every graph with n vertices and k edges has at least n k components
- An edge e is called a bridge if the graph G e has more components
- Proposition (1.2.14, W)
 An edge *e* is a bridge ⇔ *e* lies on no cycle of *G*
 - Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

Cut vertex and connectivity

- A node v is a cut vertex if the graph G v has more components
- A proper subset S of vertices is a vertex cut set if the graph G S is disconnected
- The connectivity, κ(G), is the minimum size of a cut set of G
 - The graph is k-connected for any $k \leq \kappa(G)$

Connectivity properties

- $\kappa(K^n)$: = n-1
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$

Connectivity properties (cont.)

Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- $\kappa(G) \ge 2 \Leftrightarrow G$ is connected and has no cut vertices

- A vertex lies on a cycle ⇒ it is not a cut vertex
 - \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one cycle $\Rightarrow \kappa(G) \ge 2$
 - (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle
- (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \ge n 2$, then $\kappa(G) = \delta(G)$

Edge-connectivity

- A proper subset F ⊂ E is edge cut set if the graph G − F is disconnected
- The edge-connectivity $\lambda(G)$ is the minimal size of edge cut set
- $\lambda(G) = 0$ if G is disconnected
- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Trees
Definition and properties

- A tree is a connected graph T with no cycles
- Recall that a graph is bipartite \Leftrightarrow it has no odd cycle
- (Ex 3, S1.3.1, H) A tree of order $n \ge 2$ is a bipartite graph
- Recall that an edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
- \Rightarrow Every edge in a tree is a bridge
- T is a tree \Leftrightarrow T is minimally connected, i.e. T is connected but T e is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
 - \Leftrightarrow Any two vertices of T are linked by a unique path in T
 - \Leftrightarrow *T* is minimally connected
 - i.e. T is connected but T e is disconnected for every edge $e \in T$
 - \Leftrightarrow *T* is maximally acyclic
 - i.e. T contains no cycle but T + xy does for any non-adjacent vertices $x, y \in T$
 - \Leftrightarrow (Theorem 1.10, 1.12, H) *T* is connected with n 1 edges
 - \Leftrightarrow (Theorem 1.13, H) *T* is acyclic with n 1 edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then the number of leaves is

$$2 + \sum_{v:d(v) \ge 3} (d(v) - 2)$$

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

Properties

- The center of a tree
- Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices
- Tree as subgraphs
- Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Minimal spanning tree - Kruskal's Algorithm

- Given: A connected, weighted graph G
- 1. Find an edge of minimum weight and mark it.
- 2. Among all of the unmarked edges that do not form a cycle with any of the marked edges, choose an edge of minimum weight and mark it
- 3. If the set of marked edges forms a spanning tree of *G*, then stop. If not, repeat step 2

Example

FIGURE 1.43. The stages of Kruskal's algorithm.

Theoretical guarantee of Kruskal's algorithm

• Theorem (1.17, H) Kruskal's algorithm produces a spanning tree of minimum total weight

Cayley's tree formula

• Theorem (1.18, H). There are n^{n-2} distinct labeled trees of order n

 \land \land \land $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

FIGURE 1.46. Labeled trees on four vertices.

Example

46

 $\mathbf{e}v_2$

 v_4

VA.

 v_4

 v_4

 v_4

v_A

 $\mathbf{e}v_2$

 $\bullet v_2$

 $\mathbf{P}v_2$

 Pv_3

 $\mathbf{e}v_2$

 \mathbf{P}_{v_3}

 \bullet_{v_3}

Trees with fixed degrees

- Corollary (2.2.4, W) Given positive integers d_1, \ldots, d_n summing to 2n-2, there are exactly $\frac{(n-2)!}{\prod(d_i-1)!}$ trees with vertex set [n] such that vertex i has degree d_i for each i
- Example (2.2.5, W) Consider trees with vertices [7] that have degrees (3,1,2,1,3,1,1)

Matrix tree theorem - cofactor

• For an *n*×*n* matrix *A*, the *i*, *j* cofactor of *A* is defined to be

 $(-1)^{i+j} \det(M_{ij})$ where M_{ij} represents the $(n-1) \times (n-1)$ 1) matrix formed by deleting row *i* and column *j* from *A* $\mathbf{3 \times 3 \text{ generic matrix [edit]}}$ Consider a 3×3 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$ Its cofactor matrix is $\mathbf{C} = \begin{pmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix},$ $+ \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix},$ $+ \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$

Matrix tree theorem

- Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled graph with adjacency matrix A and degree matrix D, then the number of unique spanning trees of G is equal to the value of any cofactor of the matrix D A
- If the row sums and column sums of a matrix are all 0, then the cofactors all have the same value
- Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove Cayley's theorem

Example

FIGURE 1.49. A labeled graph and its spanning trees.

The degree matrix D and adjacency matrix A are

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix},$$

and so

$$D - A = \begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}.$$

The (1, 1) cofactor of D - A is

$$\det \begin{bmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} = 8.$$

Score one for Kirchhoff!

Wiener index

• In a communication network, large diameter may be acceptable if most pairs can communicate via short paths. This leads us to study the average distance instead of the maximum

• Wiener index
$$D(G) = \sum_{u,v \in V(G)} d_G(u,v)$$

- Theorem (2.1.14, W) Among trees with n vertices, the Wiener index D(T) is minimized by stars and maximized by paths, both uniquely
- Over all connected *n*-vertex graphs, D(G) is minimized by K_n and maximized by paths
 - (Corollary 2.1.16, W) If G is a connected n-vertex graph, then $D(G) \leq D(P_{n-1})$
 - (Lemma 2.1.15, W) If H is a subgraph of G, then $d_G(u, v) \le d_H(u, v)$

Circuits

Eulerian circuit

- A closed walk through a graph using every edge once is called an Eulerian circuit
- A graph that has such a walk is called an Eulerian graph
- Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree
- (possibly with multiple edges)
- **Proof** " \Rightarrow " That G must be connected is obvious.

Since the path enters a vertex through some edge and leaves by another edge, it is clear that all degrees must be even

• Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2, then G contains a cycle.

Hierholzer's Algorithm for Euler Circuits

- 1. Choose a root vertex r and start with the trivial partial circuit (r)
- 2. Given a partial circuit $(x_0, e_1, x_1, \dots, x_{t-1}, e_t, x_t = x_0)$ that traverses not all edges of G, remove these edges from G
- 3. Let *i* be the least integer for which x_i is incident with one of the remaining edges
- 4. Form a greedy partial circuit among the remaining edges of the form $(x_i = y_0, e'_1, y_1, \dots, y_{s-1}, e'_s, y_s = x_i)$
- 5. Expand the original circuit by setting $(x_0, e_1, ..., e_i, x_i = y_0, e'_1, y_1, ..., y_{s-1}, e'_s, y_s = x_i, e_{i+1}, ..., e_t, x_t = x_0)$
- 6. Repeat step 2-5

Example

- 1. Start with the trivial circuit (1)
- 2. Greedy algorithm yields the partial circuit (1,2,4,3,1)
- 3. Remove these edges
- 4. The first vertex incident with remaining edges is 2
- 5. Greedy algorithms yields (2,5,8,2)
- 6. Expanding (1,2,5,8,2,4,3,1)
- 7. Remove these edges

55

Example (cont.)

- 6. Expanding (1, 2, 5, 8, 2, 4, 3, 1)
- 7. Remove these edges
- 8. First vertex incident with remaining edges is 4
- 9. Greedy algorithm yields (4,6,7,4,9,6,10,4)
 10. Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1)
- 11. Remove these edges
- 12. First vertex incident with remaining edges is 7
- 13. Greedy algorithm yields (7,9,11,7)
- 14. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Eulerian circuit

 Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree

- TONCAS: The obvious necessary condition is also sufficient
- Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree

Hamiltonian path/circuits

- A path P is Hamiltonian if V(P) = V(G)
 - Any graph contains a Hamiltonian path is called traceable
- A cycle C is called Hamiltonian if it spans all vertices of G
 - A graph is called Hamiltonian if it contains a Hamiltonian circuit
- In the mid-19th century, Sir William Rowan Hamilton tried to popularize the exercise of finding such a closed path in the graph of the dodecahedron

Degree parity is not a criterion

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

- Hamiltonian graphs
 - all even degrees C₁₀
 - all odd degrees K₁₀
 - a mixture G_1
- non-Hamiltonian graphs
 - all even G_2
 - all odd $K_{5,7}$
 - mixed P_9

Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

Figure 1.4

• Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete

P, NP, NPC, NP-hard

- P The general class of questions for which some algorithm can provide an answer in polynomial time
- NP The class of questions for which an answer can be *verified* in polynomial time
- NP-Complete
 - 1. c is in NP
 - 2. Every problem in NP is reducible to c in polynomial time
- NP-hard
 - c is in NP
 - Every problem in NP is reducible to c in polynomial time

Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then *G* is connected (Ex16, S1.1.2, H) (1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then *G* need not be connected

- The bound is tight (Ex12b, S1.4.3, H) $G = K_{r,r+1}$ is not Hamiltonian
- The condition is not necessary
 - C_n is Hamiltonian but with small minimum (and even maximum) degree

Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of order $n \ge 3$. If $deg(x) + deg(y) \ge n$ for all pairs of nonadjacent vertices x, y, then G is Hamiltonian

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Independence number & Hamiltonian

- A set of vertices in a graph is called independent if they are pairwise nonadjacent
- The independence number of a graph G, denoted as $\alpha(G)$, is the largest size of an independent set

• Example:
$$\alpha(G_1) = 2, \alpha(G_2) = 3$$

- Theorem (1.24, H) Let G be a connected graph of order $n \ge 3$. If $\kappa(G) \ge \alpha(G)$, then G is Hamiltonian
- The result is tight: $\kappa(G) \ge \alpha(G) 1$ is not enough

•
$$K_{r,r+1}: \kappa = r, \alpha = r+1$$

• Peterson graph: $\kappa = 3$, $\alpha = 4$ (Ex4, S1.4.3, H)

FIGURE 1.63. The Petersen Graph.

Pattern-free & Hamiltonian

- *G* is *H*-free if *G* doesn't contain a copy of *H* as induced subgraph
- Theorem (1.25, H) If G is 2-connected and $\{K_{1,3}, Z_1\}$ -free, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle

- The condition 2-connectivity is necessary
- (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Matchings

Definitions

- A matching is a set of independent edges, in which no pair shares a vertex
- The vertices incident to the edges of a matching *M* are *M*-saturated; the others are *M*-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3) \cdots 1 = (2n-1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Symmetric difference of matchings

- The symmetric difference of M, M' is $M\Delta M' = (M M') \cup (M' M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

- Given a matching *M*, an *M*-alternating path is a path that alternates between edges in *M* and edges not in *M*
- An *M*-alternating path whose endpoints are *M*-unsaturated is an *M*-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Hall's theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

 Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching
Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
 - Art museum is a graph with hallways are edges and corners are nodes
 - A security camera at the corner will guard the paintings on the hallways
 - The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let *G* be a bipartite graph. The maximum size of a matching in *G* is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Augmenting path algorithm (3.2.1, W)

- Input: G = B(X, Y), a matching M in G $U = \{M - \text{unsaturated vertices in } X\}$
- Y • Idea: Explore *M*-alternating paths from *U*
 - letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- Initialization: $S = U, T = \emptyset$ and all vertices in S are unmarked
- Iteration:
 - If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching

X

- Otherwise, select an unmarked $x \in S$ to explore
 - Consider each $y \in N(x)$ such that $xy \notin M$
 - If y is unsaturated, terminate and report an M-augmenting path from U to y
 - Otherwise, $yw \in M$ for some w
 - include y in T (reached from x) and include w in S (reached from y)
 - After exploring all such edges incident to x, mark x and iterate.

Theoretical guarantee for Augmenting path algorithm

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight w(M)
- Bipartite graph
 - W.I.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \ge 0$ for all $i, j \in [n]$
 - Optimization:

$$\max \sum_{\substack{i,j \\ s.t. a_{i,1}^{i,j} + \dots + a_{i,n} \leq 1 \text{ for any } i \\ a_{1,j} + \dots + a_{n,j} \leq 1 \text{ for any } j \\ a_{i,j} \in \{0,1\}$$

- Integer programming
- General IP problems are NP-Complete

(Weighted) cover

- A (weighted) cover is a choice of labels u_1, \ldots, u_n and v_1, \ldots, v_n such that $u_i + v_j \ge w_{i,j}$ for all i, j
 - The cost c(u, v) of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

$$\min \sum_{i}^{i} u_{i} + \sum_{j}^{j} v_{j}$$

s.t. $u_{i}^{i} + v_{j} \ge w_{i,j}$ for any i, j
 $u_{i}, v_{j} \ge 0$ for any i, j

Duality

- Weak duality theorem
 - For each feasible solution *a* and (*u*, *v*)

$$\sum_{i,j} a_{i,j} w_{i,j} \leq \sum_{i} u_i + \sum_{j} v_j$$

thus max $\sum_{i,j} a_{i,j} w_{i,j} \leq \min \sum_{i} u_i + \sum_{j} v_j$

Duality (cont.)

- Strong duality theorem
 - If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_i u_i + \sum_j v_j$$

• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \ge w(M)$ $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$
 - So if (u, v) is optimal, then M consistes the edges in $G_{u,v}$

Hungarian algorithm

- Input: Weighted $K_{n,n} = B(X, Y)$
- Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_i w_{i,j}$, $v_j = 0$

Hungarian algorithm (cont.)

- **Iteration**: Find a maximum matching M in $G_{u,v}$
 - If *M* is a perfect matching, stop and report *M* as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$

Let
$$R = X \cap Q$$
, $T = Y \cap Q$
 $\epsilon = \min\{u_i + v_j - w_{i,j} : x_i \in X - R, y_j \in Y - T\}$

- Decrease u_i by ϵ for $x_i \in X R$ and increase v_j by ϵ for $y_j \in T$
- Form the new equality subgraph and repeat

Example

Example 2

Optimal value is the same But the solution is not unique

Theoretical guarantee for Hungarian algorithm

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Stable matching

- A family (≤_v)_{v∈V} of linear orderings ≤_v on E(v) is a set of preferences for G
- A matching *M* in *G* is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that *e* and *f* have a common vertex *v* with $e <_v f$
 - Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' <_x xy x'y <_y xy$

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ x: a > b > c > da: z > x > y > wy: a > c > b > db: y > w > x > zz: c > d > a > bc: w > x > y > zw: c > b > a > dd: x > y > z > w

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of n men and n women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
 - If each woman receives exactly one proposal, stop and use the resulting matching
 - Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
 - Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Example (gif)

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- When the algorithm runs with women proposing, every woman is as least as happy as when men do the proposing
 - And every man is at least as unhappy

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ x: a > b > c > da: z > x > y > wy: a > c > b > db: y > w > x > zz: c > d > a > bc: w > x > y > zw: c > b > a > dd: x > y > z > w

Perfect matchings

- K_{2n} , C_{2n} , P_{2n} have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching
- Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \ge n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for q = 3, and the contracted graph G_S from Theorem 2.2.3.

Petersen's Theorem

• Theorem (1.60, H; 2.2.2, D; 3.3.8, W) Every bridgeless, 3-regular graph contains a perfect matching

Find augmenting paths in general graphs

- Different from bipartite graphs
- Example: How to explore from M-unsaturated point u
- Flower/stem/blossom

d

х

b

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- Idea: Explore M-alternating paths from *u*, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S = \{u\}$ and $T = \emptyset$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate

Illustration

Example

- [Eulerian circuits] Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree
- [Hall's theorem] (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$
- [Tutte's Theorem](1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Peterson graph

- The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- $\kappa = 3, \alpha = 4$
- Radius=2, diameter=2
- The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

