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Exam code

* Exam on Oct 29 10:00-12:00 at Dong Shang Yuan 407 (lecture
classroom)

* Finish the exam paper by yourself

* Allowed:
 Calculator, watch (not smart)

* Not allowed:
* Books, materials, cheat sheet, ...
* Phones, any smart device

* No entering after 10:30
* Early submission period: 10:30--



Grading policy

* Attendance and participance: 5%
* Assignments: 35%

* Midterm exam: 20%

* Project: 10%

* Final exam: 30%



Covered topics

* Basics
* Graphs, paths/walks/cycles, bipartite graphs

* Connectivity
* Trees

* Circuits

* Matchings



Basic Concepts



Graphs

We mainly focus on

* Definition A graph G is a pair (V, E) Simple graph:

No loops, no multi-edges

e VV:set of vertices
* E:set of edges
* e € E corresponds to a pair of endpoints x,y € V

* Two graphs G; = (V,E;), Gy = (V,, E,) are isomorphic if there is a
bijection f:1; = I, s.t.

e =1{a,b} € E; & f(e):=1f(a),f(b)} € E;



Example: Complete graphs

* There is an edge between every pair of vertices




Example: Regular graphs

* Every vertex has the same degree

JAN 0i0,0,0®
AA| ? oRelioRe

1| R 1>

> OO

1 &




Example: Bipartite graphs

* The vertex set can be partitioned into two sets X and Y such that
every edge in G has one end vertex in X and the otherinY

* Complete bipartite graphs




Example (1A, L): Peterson graph

* Show that the following two graphs are same/isomorphic

Figure 1.4



Subgraphs

* A subgraph of a graph G is a graph H such that
V(H) € V(G),E(H) € E(G)
and the ends of an edge e € E(H) are the same asits ends in G
* His aspanning subgraph whenV(H) =V (G)
* The subgraph of G induced by a subset S € V(G) is the subgraph whose
vertex set is S and whose edges are all the edges of G with both ends in §

HEG

Subgraph (in red) Induced Subgraph
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Paths (B&4%)

* A path is a nonempty graph P = (V, E') of the form
V="{xg, %1, ... X} E ={xgX1, XX, e, Xp—1 X}
where the x; are all distinct

e P¥: path of length k (the number of edges)




Walk (Jif )

* A walk is a non-empty alternating sequence vye v €, ... €5 Uy
* The vertices not necessarily distinct
* The length = the number of edges

* Proposition (1.2.5, W) Every u-v walk contains a u-v path



Cycles (3)

* If P =xpX; ... X1 isa path and k = 3, then the graph C := P +
X1 _1Xg is called a cycle

* C¥: cycle of length k (the number of edges/vertices)

[ ]

n=4 n=5 n=6

* Proposition (1.2.15, W) Every closed odd walk contains an odd cycle



Neighbors and degree

* Two vertices a # b are called adjacent if they are joined by an edge

* N(x): set of all vertices adjacent to x
* neighbors of x
* Avertexisisolated vertex if it has no neighbors



Handshaking Theorem (Euler 1736)

A finite graph G has an even number of vertices with

odd degree.

The degree of x is the number of times it appears
in the right column. Thus

D deg() = 2IE(G)

xeV(G)

edge

ends

a

Q 40 &0 o

T,z
Y, w
X,z
2, W
2, W
Zz,Y
2, W

Figure 1.1




Degree

* Minimal degree of G: 6(G) = min{d(v):v € V}
* Maximal degree of G: A(G) = min{d(v)' v EV}

* Average degree of G: d(G) = Zvev d(v) = ZlEl

* All measures the density’ of a graph

- d(G) = 6(G)
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Degree (global to local)

* Proposition (1.2.2, D) Every graph G with at least one edge has a
subgraph H with

1 1
5(H) > = d(H) = 5d(6)

oo
ounve
© e‘eﬁ

* Example: |G| = 7,d(G) = 16/7



Minimal degree guarantees long paths and
cycles

(1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.




Distance and diameter

* The distance d;(x,y) in G of two vertices x, y is the length of a
shortest x~7y path

* if no such path exists, we set d(x,y) = oo

* The greatest distance between any two vertices in G is the diameter
of G



Girth

* The minimum length of a cycle in a graph G is the girth g(G) of G

* Example: The Peterson graph is the unique 5-cage
e cubic graph (every vertex has degree 3)
e girth=5

* smallest graph satisfies the above properties

* A tree has girth oo




Girth and diameter/minimal degree

* Proposition (1.3.2, D) Every graph G containing a cycle satisfies
g(G) < 2diam(G) + 1

1+6Y-5(6—1), ifg=2r+1isodd
231248 — 1), if g = 2r is even
* Exercise (Ex7, chl, D) Let G be agraph. If §(G) = 6 = 2and g(G) =
g, then |G| =ny(6,9)
e Corollary (1.3.5, D) If §(G) = 3, then g(G) < 2log|G]

*no(8,9) =



Triangle-free bounds # of edges

* Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an n-vertex triangle-free simple graph is |n? /4|

* The bound is best possible
* There is a triangle-free graph with |[n? /4| edges: Kin/21m/21

* Extremal problems



Jeff 1 Britta

Bipartite graphs

(1.2.18, W, K6nig 1936)
A graph is bipartite < it contains no odd cycle

(1.2.15, W) Every closed odd walk contains an odd cycle



Complete graph is a union of bipartite graphs

* The union of graphs G4, ..., G, written G; U --- U Gy, is the graph with
vertex set UX_, V(G;) and edge set UX_, E(G;)

* Theorem (1.2.23, W) The complete graph K,, can be expressed as the
union of k bipartite graphs & n < 2%

 Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph
with at least |E|/2 edges



Connectivity



Connected, connected component

e A graph G is connected if G # @ and any two of its vertices are linked
by a path

* A maximal connected subgraph of ¢ is a (connected) component
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Quiz

* Problem (1B, L) Suppose G is a graph on 10 vertices that is not
connected. Prove that G has at most 36 edges. Can equality occur?

* More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not
connected. What is the maximum size of G?



Connected vs. minimal degree

(1.3.15, W) If 6 (G) = nT_l, then G is connected

« (Ex16, S1.1.2, H) (1.3.16, W)

If 6(G) = n;Z, then G need not be connected

* Extremal problems

”n

e “best possible” “sharp”



-0
Add/delete an edge @ I:

* Components are pairwise disjoint; no two share a vertex

* Adding an edge decreases the number of components by O or 1
* = deleting an edge increases the number of components by O or 1
* Proposition (1.2.11, W)
Every graph with n vertices and k edges has at leastn — k
components

* An edge e is called a bridge if the graph ¢ — e has more components

* Proposition (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

30



Cut vertex and connectivity I—I>

* Anode v is a cut vertex if the graph G — v has more O\D
components

* A proper subset S of vertices is a vertex cut set if the
graph G — S is disconnected

* The connectivity, k(G), is the minimum size of a cut
set of G

* The graph is k-connected for any k < k(G)

31



Connectivity properties

ck(K"):=n—-1
* If G is disconnected, k(G) = 0

* = A graphis connected © k(G) > 1

* If G is connected, non-complete graph of order n, then
1<k(G)<n-2



Connectivity properties (cont.)

on (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* kK(G) = 2 < (G is connected and has no cut vertices

* A vertex lies on a cycle # it is not a cut vertex

« = (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one
cycle # k(G) = 2

* (Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle

e (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge



Connectivity and minimal degree

e (Ex15, S1.1.2, H)

* k(G) <6(G) <
* If §5(G) = n—2,thenk(G) = 6(G)




Edge-connectivity

* A proper subset FF C E is edge cut set if the graph G — F is
disconnected

* The edge-connectivity A(G) is the minimal size of edge cut set
* A(G) = 0if G is disconnected
(1.4.2, D) If G is non-trivial, then k(G) < A(G) < §(G)




Trees



Definition and properties

* A treeis a connected graph T with no cycles
* Recall that a graph is bipartite < it has no odd cycle
* (Ex 3,S1.3.1, H) A tree of order n = 2 is a bipartite graph

* Recall that an edge e is a bridge < e lies on no cycle of G
* = Every edge in a tree is a bridge

e Tisatree & T is minimally connected, i.e. T is connected butT — e
is disconnected for everyedgee € T



Equivalent definitions (Theorem 1.5.1, D)

 Tisatree of ordern
& Any two vertices of T are linked by a unique pathin T
< T is minimally connected

* i.e. T is connected but T — e is disconnected for everyedgee € T

< T is maximally acyclic

* i.e. T contains no cycle but T + xy does for any non-adjacent vertices x,y €
T

< (Theorem 1.10, 1.12, H) T is connected with n — 1 edges
< (Theorem 1.13, H) T is acyclic with n — 1 edges



Leaves of tree

* A vertex of degree 1 in a tree is called a leaf

* Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order n = 2. Then
T has at least two leaves

* (Ex3,S1.3.2, H) Let T be a tree with max degree A. Then T has at least
A leaves

* (Ex10, S1.3.2, H) Let T be a tree of order n = 2. Then the number of
leaves is
2+ ) (@d®) -2)

v:d(v)=3
* (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex



Properties

* The center of a tree

* Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices

* Tree as subgraphs

* Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6(G) = k. Then G contains T as a subgraph



Spanning tree

e Given a graph G and a subgraph T, T is a spanning tree of G if T is a
tree that contains every vertex of ¢

* Example: A telecommunications company tries to lay cable in a new
neighbourhood

* Proposition (2.1.5¢, W) Every connected graph contains a spanning
tree



Minimal spanning tree - Kruskal’s Algorithm

* Given: A connected, weighted graph G
1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any
of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of G, then stop. If
not, repeat step 2



Example

FIGURE 1.43. The stages of Kruskal’s algorithm.
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Theoretical guarantee of Kruskal’s algorithm

* Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight



Cayley’s tree formula /~ —\ /\

* Theorem (1.18, H). There are n™ 2
distinct labeled trees of order n

—lA A A
030363 0
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e O ] O o) @ O FIGURE 1.46. Labeled trees on four vertices.
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Evolving Sequence

4

4,3

4,3,1

4,3,1,3

4,3,1,3,1

FIGURE 1.47. Creating a Priifer sequence.

c=06,-4,3,1,3,1

§=5,={1,2,3,4,5,6,7}
6,=3,1,3,1
5,=1{1,3,4,5,6,7
c,=1,3,1

§,=1{1,3,5,6,7}

o,=3,1

§;=1{1,3,6,7}

o, =1

§,={1,3,7}

o is empty

S.={1,7}

FIGURE 1.48. Building a labeled tree.

Vi

Vi

Vg
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Trees with fixed degrees

* Corollary (2.2.4, W) Given positive integers d, ..., d,, summing to
(n-2)!

[1(d;—1)!
vertex i has degree d; for each i

2n — 2, there are exactly trees with vertex set [n] such that

* Example (2.2.5, W) Consider trees with vertices [7] that have degrees
(3,1,2,1,3,1,1)

1 5 1

T T

1 3
-

]




Matrix tree theorem - cofactor

* For an nXn matrix 4, the i, j cofactor of
A is defined to be

(—1)i+j det(MU)
where M;; represents the (n — 1)xX(n —
1) matrix formed by deleting row i and
column j from A

3 x 3 generic matrix |edit]

Consider a 3x3 matrix

aiy Qa12  G13
A= G Gy azz |-
azy a3z Qas3

Its cofactor matrix is

( 4|02 as| _len
agy  ass a3y
aljp a3 a1

C — — nl_
azy 33 a3y
a2 a3 a1l

\F g
@y a3 aay

a3
ass

ays
a3

ais
as3

an
a3l

ay
31

| 411

Qzy

a2
asz

aiz
a3z

a2
a2
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Matrix tree theorem

* Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled
graph with adjacency matrix A and degree matrix D, then the number
of unique spanning trees of G is equal to the value of any cofactor of
the matrix D — A

* |f the row sums and column sums of a matrix are all 0, then the
cofactors all have the same value

e Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove
Cayley’s theorem



\’3 ‘*‘4

L I X TIN
AN P

FIGURE 1.49. A labeled graph and its spanning trees.

The degree matrix D and adjacency matrix A are

D:

and so

o

oo O

0

o O N

0

0
3
0

D-A=

0

w o o

The (1, 1) cofactorof D — A is

Score one for Kirchhoff!

det

{)

i

2 0
0 2
-1 -1
-1 -1

-1 3
-1 -1

—1

0

0
1
1

— -0 O

pdk D b ek
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Wiener index

* In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

* Wiener index D(G) = Xy, pey () 46 (W, V)

 Theorem (2.1.14, W) Among trees with n vertices, the Wiener index
D (T) is minimized by stars and maximized by paths, both uniquely

* Over all connected n-vertex graphs, D(G) is minimized by K,, and
maximized by paths

* (Corollary 2.1.16, W) If G is a connected n-vertex graph, then D(G) <

D(Pn—l)
* (Lemma 2.1.15, W) If H is a subgraph of G, then d;(u,v) < dy(u,v)



Circults



Eulerian circuit

* A closed walk through a graph using every edge once is called an
Eulerian circuit

* A graph that has such a walk is called an Eulerian graph

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* (possibly with multiple edges)

“=" That G must be connected is obvious.
Since the path enters a vertex through some edge and
leaves by another edge, it is clear that all degrees must be even

(1.2.25, W) If every vertex of a graph G has degree at least 2, then G
contains a cycle.



Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex r and start with the trivial partial circuit ()

2. Given a partial circuit (xg, €1, X1, ..., Xt_1, €, X = X) that traverses not
all edges of G, remove these edges from G

3. Leti be the least integer for which x; is incident with one of the
remaining edges

4. Form a greedy partial circuit among the remaining edges of the form
(Xi = Yo, €1, Y1, - Vs—1, €5, Vs = X;)

5. Expand the original circuit by setting
(xO' €1, €1 X = Vo, 8{, Vi Ys—1 8;, Vs = Xiy€ig1y ey €6, Xt = xO)

6. Repeat step 2-5



Example

1. Start with the trivial circuit (1)

Greedy algorithm yields the partial circuit
(1,2,4,3,1)

N

Remove these edges

The first vertex incident with remaining edges is 2
Greedy algorithms yields (2,5,8,2)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

N o U &AW

10
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Example (cont.)

. Remove these edges ' o o)
. First vertex incident with remaining edges is 7 5O °o b”
. Greedy algorithm yields (7,9,11,7) O

. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

First vertex incident with remaining edges is 4

Greedy algorithm yields (4,6,7,4,9,6,10,4) o 10
.Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1) 30 o’



Eulerian circuit

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Konigsberg
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TONCAS

* TONCAS: The obvious necessary condition is also sufficient

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree



Hamiltonian path/circuits

* A path P is Hamiltonian if V(P) = V(G)

* Any graph contains a Hamiltonian path is called traceable

* A cycle C is called Hamiltonian if it spans all vertices of G
* A graph is called Hamiltonian if it contains a Hamiltonian circuit

* In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of
the dodecahedron

&

Figure 1.9
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Degree parity Is not a criterion

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* Hamiltonian graphs
* all even degrees (4
* all odd degrees K
* a mixture G4

* non-Hamiltonian graphs G,
* all even G,
* all odd K5
* mixed Pq
G,
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Example

* The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

Figure 1.4

* Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete



P, NP, NPC, NP-hard

* P The general class of questions for which
some algorithm can provide an answer in
polynomial time

* NP The class of questions for which an answer
can be verified in polynomial time

* NP-Complete
1. cisin NP

2. Every problemin NP is reducible to cin
polynomial time

e NP-hard
i

e Every problem in NP is reducible to c in polynomial
time

NP-Hard

NP-Complete

NP-Hard

P=NP

\ = NP-Complete ,
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Large minimal degree implies Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern = 3. 1f §(G) = n/2,
then G is Hamiltonian
(1.3.15, W) If 6 (G) = nz;l, then G is connected

(Ex16, S1.1.2, H) (1.3.16, W)
If6(G) = nz;z’ then G need not be connected

* The bound is tight
(Ex12b, S1.4.3, H) G = K, ;41 is not Hamiltonian

* The condition is not necessary
* (,, is Hamiltonian but with small minimum (and even maximum) degree



Generalized version

* Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of
order n = 3. If deg(x) + deg(y) = n for all pairs of nonadjacent
vertices x,y, then G is Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern > 3. If §(G) = n/2,
then G is Hamiltonian




Independence number & Hamiltonian

* A set of vertices in a graph is called independent if o /

they are pairwise nonadjacent f :

* The independence number of a graph G, denoted as “ : :
a(G), is the largest size of an independent set

e Example: a(G;) = 2, a(G,) = 3

* Theorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

* The resultis tight: k(G) = a(G)—1 is not enough
* Kk =ra=r+1
* Peterson graph: k = 3,a = 4 (Ex4, 51.4.3, H) FIGURE 1.63. The Petersen Graph




Pattern-free & Hamiltonian .4\ ﬂ

e G is H-free if G doesn’t contain a copy of H as induced subgraph

* Theorem (1.25, H) If G is 2-connected and {K1,3,Z1}-free, then G is
Hamiltonian

(Ex14, 51.1.2, H) k(G) = 2 implies G has at least one cycle

* The condition 2-connectivity is necessary
* (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected



Matchings



Definitions

* A matching is a set of independent edges, in which no pair shares a
vertex

* The vertices incident to the edges of a matching M are M-saturated;
the others are M-unsaturated

* A perfect matching in a graph is a matching that saturates every
vertex

* Example (3.1.2, W) The number of perfect matchings in K,, , is n!

* Example (3.1.3, W) The number of perfect matchings in K, is



Maximal/maximum matchings # K/ 8¢ K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P3, P N N
G 37

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings @

* The symmetric difference of M,M"is MAM' = (M — M") U (M’ — M)

* Lemma (3.1.9, W) Every component of the symmetric difference of
two matchings is a path or an even cycle

Q
Oe—)
y 8 0O

0

0]
)
o)
o)
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Maximum matching and augmenting path

* Given a matching M, an M-alternating path is a path

that alternates between edges in M and edges not in

M \
* An M-alternating path whose endpoints are M- y - s

unsaturated is an M-augmenting path

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G & G has <, ! ~
no M-augmenting path ¢ aaaaaaaaa

exposed
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Hall’'s theorem (TONCAS)

(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © |[N(S)| = [S| forall S € X

(3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G
is @ maximum matching in G © G has no M-augmenting path

e Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching



Vertex cover

* Aset U € V is a (vertex) cover of E if every edge in G is incident with
a vertexin U

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
e A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

* Theorem (3.1.16, W; 1.53, H; 2.1.1, D; K6nig 1931; Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges

(3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G
is @ maximum matching in G © G has no M-augmenting path
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Augmenting path algorithm (3.2&1, SW)

X

* Input: ¢ = B(X,Y), amatching M in G
U = {M-unsaturated vertices in X } y

* Idea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching
* Otherwise, select an unmarked x € S to explore
* Consider eachy € N(x) such that xy ¢ M
* |If y is unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* include y in T (reached from x) and include w in S (reached from y)

» After exploring all such edges incident to x, mark x and iterate.



A1

B1

Red: A random matching
A2 A3 A4

B2 B3 B4

A5

BS
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Theoretical guarantee for Augmenting path
algorithm

* Theorem (3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

 Bipartite graph
* W.l.o.g. Assume the graph is K, ,, withw; ; = 0 forall i,j € [n]

* Optimization:
maxz ai,jwi,j

L,j :

s.t.aj; +--+a;, <1lforanyi
a;; +-++a,; <1foranyj
a; j € {0,1}

score(H) = 1.6

01(1)

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

* A (weighted) cover is a choice of labels u4, ..., u,, and vy, ..., v,, such
thatu; + v; = w; ; forall i,
* The cost c¢(u, v) of a cover (u, v) is X;u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

* Optimization problem

minZui +ZU]

L J ..
s.t.u; +v; = w; ; foranyi,j
u;, v; = 0foranyi,j



Duality

(IP)

max Z ai,jWi,j
Lj
s.t.aj; +--+a;, <1lforanyi
a;; + -+ ay; <1foranyj

ai,j € {0,1}

>

(Linear programming)

maxz ai,jWi,j
Lj
s.t.aj; +-+a;, <1lforanyi
a;; + -+ ay; <1foranyj

ai,]- >0

e 4

(Dual)

i
s.t.u; +v; 2w, jforany i, j
U, vj 2 0

minZui +2vj
J

* Weak duality theorem
* For each feasible solution a and (u, v)

IRTTED)

l,J

ui+zvj
J

i

thus max }}; ;a; jw; j < min ), u; + ;v
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

max ) a; iw;j =min ) u; + V;
g =min Y Y
* Lemma (3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M)
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph

of K, , having the edges x;y; such thatu; + v; = w; ;

* So if (u, v) is optimal, then M consistes the edges in G, ,,



Hungarian algorithm

* Input: Weighted K,, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
G, , has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; =0
J
(Dual)

rnn1:E:ui4—:E:17
J

i

s.t.u; + v; = w; j forany i, j
U;, Uj >0




Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |[M| in Gy,

c LetR=XNQ,T=YNQ
€ = min{ui +Uj — W; X EX—R,yj € Y—T}

* Decrease u; by € for x; € X — R and increase vj by e fory; € T
* Form the new equality subgraph and repeat

U S R

X
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Example 2
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Example 3
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Theoretical guarantee for Hungarian
algorithm

* Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover



Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

* So the solution is a minimum vertex cover



Stable matching

A family (<,),ey of linear orderings <,, on E(v) is a set of
preferences for G

* A matching M in G is stable if for any edge e € E \ M, there exists an
edge f € M such that e and f have a common vertex v withe <, f
* Unstable: There exists xy € E \ M but xy', x'y € M with xy’ <, xy

x'y <, xy
3.2.16. Example. Given men x, y, z, w, women 4, b, ¢, d, and preferences lhisted
below, the matching {xa, yb, zd, wc} is a stable matching. E

Men {x, y,z, w} Women {a, b, c, d}
x:a>b>c>d a:z>x>y>w
yia>c>b>d b:y>w>x>z
z:c>d>a>b c:w>x>y>7z
w:c>b>a>d d:ix>y>z>w
90



Gale-Shapley Proposal Algorithm

* Input: Preference rankings by each of n men and n women

* Idea: Produce a stable matching using proposals by maintaining
information about who has proposed to whom and who has rejected
whom

* Iteration: Each man proposes to the highest woman on his preference
list who has not previously rejected him

* |f each woman receives exactly one proposal, stop and use the resulting
matching

* Otherwise, every woman receiving more than one proposal rejects all of them
except the one that is highest on her preference list

* Every woman receiving a proposal says “maybe” to the most attractive
proposal received



Example

e
3
©
3
3

9
3
2
5]

Proposal pool

© [ oo

@ ©0JO,

®

® ®

Preferences

O0—-0O O—-0O

Acceptor Table Proposor Table
1 3 2 4 ™ 1 3
3 4 1 2 @ 12
4 2 3 1 © 3 2
[4]|3 2 1 4 @ 3 1

* 1-4 propose, as none are
currently tentatively attached

R N O R
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Example (gif)
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Theoretical guarantee for the Proposal

Algorithm

 Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm

produces a stable matching

* Who proposes matters (jobs/candidates)

* When the algorithm runs with women proposing, every woman is as

least as happy as when men do the proposing

* And every man is at least as unhappy

3.2.16. Example. Given men x, y, z, w, women 4, b, ¢, d, and preferences lhisted
below, the matching {xa, yb, zd, wc} is a stable matching.

Men {x, y, z, w} Women {a, b, c, d}

x:a>b>c>d a
yia>c>b>d

w:c>b>a>d

Z>X>y>w
b:y>w>x>2

z:c>d>a>b c:
d:x>y>z>w

wW>x>y>7Z



Perfect matchings

* Ky, Con, Pyy, have perfect matchings

° (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

* Theorem(1.58, H) If G is a graph of order 2n such that 6 (G) = n, then
(G has a perfect matching

m (1.22, H, Dirac) Let G be a graph of ordern > 3. 1f §(G) = n/2,
then G is Hamiltonian
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Tutte’s Theorem (TONCAS)

* Let q(G) be the number of connected components with odd order

* Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallS SV

Gs

Fig. 2.2.1. Tutte’s condition ¢(G — S) < |S| for ¢ = 3, and the
contracted graph G5 from Theorem 2.2.3.
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Petersen’s Theorem

* Theorem (1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching



Find augmenting paths in general graphs

* Different from bipartite graphs

* Example: How to explore from M-unsaturated point u *
[
U v a

* Flower/stem/blossom
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Lifting

augmenting path
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99



Edmonds’ blossom algorithm (3.3.17, W)

Input: A graph G, a matching M in (G, an M-unsaturated vertex u

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found

* Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u
and the vertices reached along saturated edges

* Reaching an unsaturated vertex yields an augmentation.
Initialization: S = {u}and T = @

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u

. Otge;wise, select an unmarked v € S. To explore from v, successively consider each y € N(v) s.t.
y

e Ifyis unhsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting
u, )"pat

 Ify €85, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its
vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

e Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
» After exploring all such neighbors of v, mark v and iterate



Illustration

exposed exposed exposed
o) ® _ 40
C - - ’
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TONCAS

* [Eulerian circuits] Theorem (1.2.26, W) A graph G is Eulerian & it has
at most one nontrivial component and its vertices all have even

degree

e [Hall’'s theorem] (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a
bipartite graph with partition X, Y.
G contains a matching of X & |N(S)| = [S| forallS € X

e [Tutte’s Theorem](1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallSCV



Peterson graph

* The Peterson graph is the unique 5-cage
* cubic graph (every vertex has degree 3)
e girth=5
* smallest graph satisfies the above properties
ex =3, a0a=4
e Radius=2, diameter=2
* The Petersen graph has a Hamiltonian path but
no Hamiltonian cycle




